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A combined variational and perturbation-theoretic procedure is employed to obtain an upper limit to the 
ground-state energy of an electron gas at intermediate metallic densities within the accuracy of the per­
turbation-theory calculation of the ground-state energy. The Bohm-Pines auxiliary-variable theory of 
electron interactions is used. The Bohm-Pines intermediate transformation is modified so that it minimizes 
the ground-state energy at the intermediate stage. Further corrections are computed by perturbation theory 
following a procedure similar to that of Nozieres and Pines. The final results for the correlation energy at in­
termediate densities are up to 20% lower than those of the earlier investigators. In the Appendix, it is shown 
that the intermediate transformation used in this paper is an extremum for its type. 

I. INTRODUCTION 

THE ground-state energy of a system of a large 
number of electrons moving in a background of 

uniform distribution of positive charge, so that the en­
tire system is neutral, has been calculated quite ac­
curately both in the high- and the low-density limits. 
The results of these calculations are usually expressed 
in terms of the extent to which they represent improve­
ments over the Hartree-Fock calculation of the ground-
state energy. If rs is the mean interelectronic spacing 
measured in Bohr units, then one can write, 

/2.21 0.916 \ 
€o= ( h u )Ry, 

\ rs
2 rs / 

where e0 is the ground-state energy per electron, the 
first two terms on the right are that quantity calcu­
lated in the Hartree-Fock approximation and ec is the 
correlation energy. 

Gell-Mann and Brueckner1 have shown that in the 
high-density limit, the correlation energy may be written 
as the following series: 

ee=A \nrs+C+Dr$ \nr8+Ers+0(rs
2 lnr,). 

They explicitly calculated the constants A and C. 
Dubois2 and Carr and Maradudin3 have recently cal­
culated the constants D and E. 

In the low-density limit rs> 10 it was first shown by 
Wigner4 that the correlation energy may be written as a 
power series in rs~

1/2 

ec=ars-
1/2+brs-

3/2+crs-
2+. 

The densities actually found in metals lie in the inter­
mediate density region 1.80 s<5.6. There is no known 
rigorous expression for the correlation energy at these 
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densities. Utilizing the collective description of the elec­
tron gas developed by Bohm and Pines,5 Pines,8 

Nozieres and Pines7 have suggested an interpolation 
procedure by which the correlation energy may be 
obtained approximately. Hubbard8 has obtained ap­
proximate results for the correlation energy at the 
intermediate densities by a different interpolation 
procedure which agrees within the accuracy of the 
calculations with those of Nozieres and Pines.7 More 
recently, Carr and Maradudin3 have estimated the cor­
relation energy at the intermediate densities by inter­
polating between the rigorous results for the correlation 
energy in the high-density and the low-density limits. 
Their results are again in agreement with those of Refs. 
7 and 8 within the accuracy of the calculations. 

However, all the above quoted results for the cor­
relation energy are approximate. Since there is so far no 
rigorous expression for the correlation energy at metallic 
densities, it is of some interest to see if one can compute 
the correlation energy to a better degree of approxima­
tion than that of the previous investigators. 

In this paper we propose to employ a combined varia­
tional and perturbation theoretic approach to obtain an 
upper limit on the ground-state energy of an electron 
gas at the intermediate densities within the accuracy of 
the perturbation-theory calculation of the ground-state 
energy. We shall use the auxiliary variable theory of 
electron interactions of Bohm and Pines.5'6 

II. INTERMEDIATE TRANSFORMATION 

The Hamiltonian for a system of N electrons in a 
cubical box of volume Lz with uniform background of an 
equal amount of positive charge, subject to periodic 
boundary conditions may be written as 

ff=E—+iEG>**P*-2V>*, 
% 2m &̂o 

5 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
6 D. Pines, Phys. Rev. 92, 625 (1953); in Solid State Physics, 

edited by F. Seitz and D. Turnbull (Academic Press Inc., New 
York, 1955), Vol. 1, p. 373. 

7 P. Nozieres and D. Pines, Phys. Rev. I l l , 442 (1958). 
8 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957). 
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where 

and 

If we add to H, 
vk = 4<ire*/m*. 

H9idd==^ S (-n-k^TTk—2^1/27r/pyfc), 
k<kc 

(1) 

(2) 

we obtain the extended Hamiltonian of Bohm and 
Pines, #ext, 

#ext = H + #add • (3 ) 

The operators irk are such that they commute with 
all the particle operators and there exist conjugate co­
ordinate operators rjk (which also commute with the 
particle operators) satisfying the commutation relations, 

and 

The extended Hamiltonian H ext then has 3N+N' de­
grees of freedom, where 

\jrk,yk>] = 

{jk,TTk'~} = 

TOb* = 

to* 

•—ifibkk', 

••Lvk,vk'l= 
:7T__fc, 

= ? ? _ & . 

= 0 

It has been shown9 that within the random-phase 
approximation, the net effect of the added terms H&dd 

is to change the ground-state energy by 

I E 
k<kc e(k,0) 

where e(kfi) is the static dielectric constant of the sys­
tem. Since10 e(&,0)>0, the ground-state energy of the 
system is greater than or equal to that of the original 
system. Thus, if we use some trial vector |$), it is 
guaranteed in the random-phase approximation that 
£o i n t e r=(0|^ext |0)/(0k)>£o, where E0 is the exact 
ground-state energy of the original system. Since the 
random-phase approximation leads to the exact answer 
for the ground-state energy in the high-density limit, 
the above equation holds in that limit. We assume that 
it holds at intermediate densities also. We can then use 
trial vectors containing some parameters to compute 
i?ointer and then minimize EointGT with respect to these 
parameters to obtain an upper limit on the ground-state 
energy of the original system. 

Instead of making the trial vectors a function of param­
eters, we use a trial unitary transformation e{i,h)u{ck) 

containing parameters ck to transform the Hamiltonian; 

9 D. Pines, in Elementary Excitations in Solids (W. A. Benjamin, 
Inc., New York, 1963), p. 166. 

10 Reference 9, p. 292. 

the variational parameters ck in the transformation 
operator U(ck) then appear in the transformed Hamil­
tonian. We then compute £0

inter using a suitably tracta­
ble trial vector | \p0) and minimize £0

inter with respect to 
the parameters ck to obtain the "best" unitary trans­
formation. Evidently this procedure is equivalent to 
using 

e-(*7*)i7<c*)|^0) 

as the trial vector. 
Our transformation operator U(ck) is 

U(ck) = 
k<kc 

Vk1/2Ck7JkPk> (4) 

(If we put Ck— 1 for all k, we get the Bohm-Pines inter­
mediate transformation operator.) The transformed 
Hamiltonian (to be referred to as the intermediate 
Hamiltonian, denoted by Hinter) is given by 

where 

# i n t e r = ^ M # e x t < r W * , 

^ i n t e r = ^ + ^ o s c + ^ ' s r + i 3 r r l r + - f f l + ^ I I , 

T=E(pt/2m), 
i 

HOSG=^ £ (Tk*Tk+cop
21 ck 12yk*r]k), 

k<kc 

Hw=% H(pk*Pk—N)vky 
k<kc 

(5) 

(5a) 

(5b) 

(5c) 

Hv 

3rir=h 'EU.Ck*-l)(ck-l)vkpk*Pk-Nvk'}, (5d) 
k<kc 

i 
= — E Vkl/2Ckk'(Vi-htik)eik-ri 
m k<kc 

+ 1 E t r t f a - l W ^ + c c ] , (Se) 
k<kc 

Fn=(l/2») E ZivkVty'wtWmk'h"*-"'", (5f) 
k,l<ke 

cop
2 = ^7rNe2/Lsm. 

If we set Ck= 1, for all k, we obtain the Bohm-Pines in­
termediate Hamiltonian, i?mterBP, as, indeed, we should. 
We note that #inter, although similar to Hinter

BF, has the 
following new features: (1) The frequency of the 
oscillators is already ^-dependent. (2) The interaction 
term linear in the field variables, Hi is more compli­
cated by the presence of the second term in Hi. (3) 
There is a new term Hr\T which we call the residual long-
range interaction, and which represents the particle in­
teraction for k<kc. In the Bohm-Pines work features 
(1) and (3) appear only after their final transformation. 

Now choosing | \p0) to be the ground-state eigenvector 
of T-\-Hosc, 

l^o)= |^p)|^osc), (6) 

where \\pv) is a Slater determinant of single-electron 
momentum eigenvectors with minimum kinetic energy 
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and \\f/0so):=zlh<kc\4
/osGk)J \^080

k) being the lowest energy 
eigenvector of the Mh oscillator, we compute £0

i n t e r . We 
obtain 

+II[fe*-l)fe-l)(wV)-ft t] , (7) 
k<kc 

where 
(VkPk*pk) = <^p | VkPk*pk I ^3>) 

^(2e2/37r)(3ko2/2k-k/8), 
(8) 

and &0 is the Fermi wave vector, given by ko* = 3ir2NL~*. 
We now choose ck so that jE0

inter is a minimum. I t can 
easily be seen that the values of Ck that minimize 
E0

inta are 

ck=l-
\hup 

(VkPk*Pk) 

= 0 for all other k, 

where £ c = - G : + [ G : 2 + 1 2 £ O 2 ] 1 / 2 , 

a — 37rfio)p/e
2. 

for 0<k<kc 

(9) 

(10) 

Substituting (8) and (9) into (7), converting the sums 
into integrals, we can write the correlation energy per 
particle, at the intermediate stage, after some elemen­
tary integrations, as 

e / = ( l / A O ( ^ o i n t e r - E H F ) 

4&a>p/3c
3+(9/4) 

7T^2C0p
2j 

e2k0L 
!/3c+61n-

1 2 - 0 C 

12 

- (3e2kQ/A7r)ZW~ (V48)/?c
4], (11) 

where we have set /3c=&c/^o. 

For purposes of comparison, we give here the ex­
pression for the correlation energy as computed after 
the Bohm-Pines intermediate transformation. I t is 
easily obtained by setting Ck = 1 in Eq. (7) and carrying 
out the integrations. 

e / ^ - f ^ / V -
3e2k0 

4TT 
-B/5cp2-(l/48)/5c,4]. 

Bohm and Pines chose11 their cutoff momentum /3cp by 
minimizing e c

/ ( B P ) with respect to ficv. One gets 

pcp-=2a+(4a2+12y2. 

In Table I below we give the values of /3C, (3cpy ec
J, 

ec
J ( B P ) , at typical metallic densities, together with the 

11 In their subsequent papers, Pines and Nozieres chose the 
cutoff momentum from different considerations (see Ref. 7). But 
since j3cp is the cutoff momentum which minimizes ec

/(BP), any 
other choice of cutoff momentum increases the intermediate 
energy €C_/(BP). 

TABLE I. Correlation energy per particle at intermediate stage; 
the energy is given in Ry. 

:„ '<BP) Gain 

2 
3 
4 
5 

0.49 
0.59 
0.68 
0.75 

0.93 
1.09 
1.23 
1.34 

-0.018 
-0.018 
-0.018 
-0.017 

-0.035 
-0.034 
-0.033 
-0.032 

0.017 
0.016 
0.015 
0.015 

-0.093 
-0.081 
-0.072 
-0.067 

final value of the correlation energy, ec
NP as estimated 

by Nozieres and Pines.7 

Thus we see that our simple modification of the Bohm-
Pines intermediate transformation results in a gain in 
energy which is up to 20% of the final value as given by 
as given by Nozieres and Pines.7 

We shall demonstrate in the Appendix that if we 
make a small departure 8(rjk) from the linear form of 
U(rjk), and then if we compute the ground-state energy 
at the intermediate stage, the terms linear in 8(r}k) do 
not give any contribution, thus showing that our trans­
formation function is an extremum. 

III. FINAL TRANSFORMATION 

Introducing the creation and destruction operators, 
ak* and ak, 

7jk= (fi/2cx)pCk)in(ak+cf*-k), 

Trk = i(tiuPCk/2)l/2(ak*—a„k), 

together with their commutation relations which follow 
from Eqs. (4), 

\_Clk*,a<kJ~ —$kk' j 

we can rewrite our Hamiltonian as 

Winter = / / o + / / l + - 0 1 1 + # s r + # r l r , ( 1 3 ) 

where 

Ho=T-\-Hos<i 

(12) 

T=Y, — , H0Ba=% Z ftoiPCk(ak*ak+akak*), (13a) 
i 2m k<kc 

Hi=i £«*[<*ik-(p<-ifrk)-<*j>* , r <+c.c. , (13b) 
k<k, 

di=^fivk
1,2(cie

1/2/mup), 

d^Ghvty'Kck-lWW'2, 
(13c) 

and Hn, HST and Hr\F are given by the Eqs. (5f), (5c), 
and (5d), respectively. 

We adopt the random-phase approximation and ne­
glect i?n and then perform a perturbation-theoretic 
unitary transformation on our intermediate Hamil­
tonian //inter which eliminates Hi [Eq. (13b)] to first 
order in perturbation theory. The required unitary 
transformation can be shown to be V^eialh where the 
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Hermitian operator 5 is given by 

[ d * - ( p < - i f t k ) - * > * - ' < 
s= E f-c.c. 

k<kc o)pCk—k»pi/m+fik2/2m 
i 

The old Hamiltonian H\ntQv goes into the new Hamil-
tonian Hnew 

Thus, the first-order commutator of H0 cancels ex­
actly the zeroth-order commutator of Hi. Because of the 
way the higher order commutators are generated from 
the first-order commutator, there exists a relationship 
between the commutators of H0 and Hi which can be 
stated as 

Ih -e+^Wi^e-^^Hn 
oo / i y 1 

n=*i\h/ n\ 

where \J3.'XrA^^S~\n is the »th-order commutator. 
A direct calculation shows that 
i 

~[Ht>,S"]=—i E a*[#ik-(p,— l/2ftk) — 4 ] + c c 

i 

= -Hi. 

(H0+//1)„ew=r+Fosc 

f-Di/W 

Retaining only the n—\ term, we have 

H n o w " " T-\-FIOB(,-\-HTp-\~Hviv-\-Ha-\"HHT y (14) 

where 

^ o s c £*• o s c T " • " osc j 

/2ire2ft\ [2(k.p,-)/w]cop^~ (k-pf/w)2+ft2ife4/4w2 

^ O i 4 El W 

# r p = E «"*•'* 

3,/ (cfccop—k-pi)2/w—ft2&4/4w2 
•(a**0*+a*a**), 

(14a) 

(14b) 

k<kc 
(ojpCk—k • py/w — fik2/2m) 

[rfjk- ( p y - i f t k J - ^ ^ ' ^ ^ C r f x k - ( P < - i f t k ) r f 2 ] 

ffa= E 
ft2 ^ / ,D^2\^[2ajp^(k«p i-/w)+(k'pi/w)2—ft2^V4^2]+(c/b— 1)2COPCA; 

2m k >kc\ cop / (o)pcjc+k'pi/ni)2-"Jfi2k*/£tn2 

(copCk — (k • pj/m)+fik2/2m) 

(aka„k+a_k*ak*), 

(14c) 

(14d) 

and r , ^osc, #Sr, HT\r are given by Eqs. (13a), (5c), and (5d), respectively. We have neglected the effect of the final 
transformation on Hsr and HT\T. 

IV. CORRELATION ENERGY 

We now compute the correlation energy using the Hamiltonian as given by the Eqs. (14). As one should expect, 
Hosc' is diagonal with respect to eigenfunctions (6). The computation of the first-order correction to the energy 
with i9roscc+^rP+-flra' as a perturbation is entirely equivalent to computation of the second-order perturbation 
correction with Hi as a perturbation, together with the random-phase approximation. 

The correction arising from Hoac
c is (\f/ \ H08C

C | ̂ ) , 

with 

<*|ffo-o«(*)|*> = 

k<kc 

lirhe2 2(k-pi/m)cOpCk~-(k'pi/m)2+fi2k/'/^m2+(l-Ck2)^p 

-CkY, 
mwp * (cx)pCk~~k'Pi/m)2—fi2k^/4:m2 

Changing the sums to integrals, and carrying out the integrations, we obtain 

e2fnupko e2mso)p ( [" / fik2\2 /fikok\2 (x)pCk—Mok/m~M2/2m~\ 
(\p\HOSc

c(k)\ip) = ifiUpCk ck-\ Ck\ cko)p 1 —( J In 
2irhk2 kirWk* l L \ 2m) \ m 1 o)vck+fik0k/m-~fik2/2mJ 

K fik2\2 /fik0k\2-l 

2ml \ m / J 

fikok\2~\ oopcjc+fikok/m+fik2/2m} 
X In 

oipCu—fikok/m-{-fik2/2m J 
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Similarly, we obtain the correction arising from Hn 

<*|ffrp|*>=E<*|#rp*|*>> 

where (\f/ \ Hw
k | ^ ) , after elementary integrations, is given by 

<*|ffrp(*)|*>=- — 
1 [ e2m2wp

2 

, 2 ™ -
~Ck* 

e2k 1 e2k 

2h{ 2irfi2k* 2irfi2k irfi2k 12TT 24 TT 

M 2 \ 2 /kpF\2~] [upCk~M2/2m—kpF/tn^o)pCk~M2/2in+kpF/inJi 

4nh* ¥ 1 A 2ml \ m I J 0)p2Ck
2 

Then 

r y M 2 \ 2 fkpF\2~\ 
+ ( « , * * + — ) - ( ) In— 

(o)pCk+fik2/2m+kpF/m)(copCk+fik2/2m~kpF/ni) 

e2mot)ppF e2pF2Ck e2kck e2pF2Ck e2kck2 e2m2cop
2Ck2 e2mzo)pCk 

(\p\Hip(k)+Hosc
c(k)\\f/)=~ificcpCk— ck-

X 
y nk2y fkpPv 
( 0)pCk ) — f ) 

A 2ml \ m I 
ln-

2irfi2k2 2^h2h 12TT irti2k 24TT 

a)pCk 

2irh2kz 4 r f £ 5 

copCk—fik2/2m-\-kpF//fn 

V M 2 \ 2 /kpF\l 

A 2ml \ m I 
ln-

copCk+fik2/2m+kpF/fn 

G)pCk 

The correction per particle due to HOBC
c and Hip can then be written as 

N 
(15) 

2w2n 
k2dk&\BOSce*(k) + HrMW-

This integration can be carried out numerically. 
We next compute the second-order perturbation theory correction €sr arising from HST [Eq. (5c)]. I t can be 

seen to be 
€s r=e s r

a +e s / , (16) 

where esr
a, the correction for electrons with antiparallel spin and esr

p for electrons with parallel spin, are given by 

(16a) 

1 

with 

and 

57T3 J/3>/3C 

— f dWM, 
87T3 J 0>/3' 

) = - f ffipi f d*p2-
2TT2 3* J J 

(16b) 

1 

\pl\ < 1 \i>2\ < 1 
|P i+/J |>l \9t+fi\>l 

^ 2 + 5 ' ( P l + P 2 ) 

Jp(P)=~ 
2w2 

j d*px f d 
I P I | < I l̂ sl <i 

| P 1 + / 3 | > 1 | p a + j 8 | > l 

1 1 

P* /52(5+Pi+p2)2 

(pi, P2 are electron momenta measured in the units of Fermi momentum.) 
Nozieres and Pines7 have argued that the contribution esr

p from the electrons with parallel spin is small. We have 
not shown that it will be small for our choice of cutoff momentum but we believe it is negligible; in any case the cor­
rection will be negative and will lead to further lowering of the ground-state energy. From here on we neglect this 
contribution. 
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For £>2, with \pi\, \p2\ < 1 , the restrictions (pi+(3| > 1 and |p2+@| > 1 , are automatically satisfied. Further­
more, for /3>2, ?-(pi+p2)//52<l and therefore we can write, for /3>2, 

Ja«*(P) = £ E(-l)^B-8^r/'dVl/'^»C(ff-Pl)^r(B-Pl)r] 
7T2 «=0 r=0 J J 

(nCr are the coefficients in the binomial expansion) 

QO 2m (2m)! 

= ™ 4 8 H r 2 w " 2 for 0 > 2 . (17) 
m~o .-o (2j+3)(2j+l)!(2w-2j+3)(2fii-2^+l)! 

For /5<2, on carrying out the integrations we obtain, 

3 r 1 29 / - 8 3 2 1 \ / 1 1 161\ 
/a in(/?)-- P+—P+1—0 ]ln2+ -1+-/32- /34+ I 

2/34L 20 15 \ 3 15/3/ \ 6 80 15/3/ 
/ 1 1 161\ -I 

Xln(2-/3)+(l----/32+—/34+ J ln(2+/3) for /3<2. (18) 
\ 6 80 15/5/ J 

Substituting (17) and (18) in (16) we obtain 

2w2 J 6>2 2w2 J 3'<6<2 f P>2 m* J 0'</5<2 

•12 oo (2»-2) n 1 1 

7T2 n=i(2^+l)^i22«+1 (2/— 1)I(2/+l)(2»—2/+1)!(2»—2/+3) 

3 r / - 4 8 \ 1 1 8 16 1 
— f — l n 2 ) l n 2 "+—-/?c

2-~(l-ln2) ln/3c~ ln2 
47r2L\15 3 / 15 60 3 15 /3C

2 

/ 1 1 1 8 1 2 \ / 1 1 1 8 1 2\ "] 
•(— f ic*—&o—+ + - J ln(2-&)+( /3C

3+-/3C+-+ + - J ln(2+/5c) Ry. 
\240 6 /3C 15/3C

2 3 / \ 240 6 /3C 15/3C
2 3 / J 

+ 
The first term in the above expression can be evaluated numerically. 
Finally we evaluate the correction which arises from HTp and Hv\r in second and higher order perturbation theory, 

€2, by the Gell-Mann-Breuckner selective summation method. In principle this can be done exactly but the com­
putations become unmanageable. We are, therefore, forced to resort to an approximation. 

Our approximation consists in making a series expansion in powers of k of the coefficients ck 

67rfio)p (k/ko) 

k0 12-(V*o)2 

2e2k<Sko/\ 12 / 

From Table I, we see that the series converges quite rapidly for the values of f3 at metallic densities. Retaining 
only the term linear in /3, we have 

flCOp k k 
ckp^l — — = 1 — y - ~ , 

2#2&o ko ko 
where 

y^=2e2ko/Trfio)p. 

Using this approximate value of ck, one can write HTP, expanding the denominator in powers of k and retaining 
the lowest order term in k, as 

2we2 (k-piXk-py) 27T6!2 

tf_„~ £ - — - eik'(Ti-rj) £ 0<k.<r«-r/> 

m20)p
2 k<kc,i^3 k2 J2 k<kc,i^J 
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and in the same approximation, 

Thus 

Hrp-{~HT rp"T**-*rlr— 

lire2 

lire* 1 
*- • L ~ ( k - Pi) (k- p , > * ' <r*"r'> • 

W 2 W p
2 k<kc,i^jk2 

We can now write €2 as (see the Appendix of Ref. 7) 

3 C^ 
€2— --

/•*> r00 =0 ( - ~ l ) n 

/ a^ I duYL -[G*(«)]BRy, 
n=-2 ft 

where 

Qfi(u)-
J S2 i - . AT J ft! 

, I P I < I 

+ (-3«M-f0 2«) arctan-
(1+fc 

-f«| n 1 
arctan arctan — § $u2 In 

1+4/5 (1-1/3)- (Wfl1 

(19) 

r 3/3 3 ^ 2 3 ^ 4 3 9 ••" 
+ 1 1 +-K33—®*<2 

(1+J/3)V«2+1 
ln-

16 4/3 4 £ 64 8 J ( W / 3 ) 2 / w 2 + l 

( I t is readily verified that the above expression for Qp(u) reduces to that of Nozieres and Pines [Eq. (A7) of 
Ref. 7] for small p.} 

Summing the series in (19), we obtain 

C 2 = . 
4:Tra2r8 

du{lnZl+Qfi(u)]-Qfi(u)}Ry. 

The above integrations can be carried out numerically. 
In Table II , we list the numerical values of the various 

corrections at metallic densities. In Table I I I we give the 

TABLE II. Numerical values of the corrections 

f» €1 

2 -0.004 
3 -0.004 
4 -0.004 
5 -0.004 

est 

-0.035 
-0.027 
-0.022 
-0.020 

inRy. 

€2 

-0.036 
-0.029 
-0.027 
-0.025 

TABLE III. Comparison of the correlation energy by various 
estimates. The energies are in Ry units. 

r3 

3 
ssent 
a 
b 
c 

-0.106 
-0.093 
-0.099 
-0.096 

-0.094 
-0.081 
-0.086 
-0.076 

-0.086 
-0.072 
-0.074 
-0.064 

-0.081 
-0.065 
-0.067 
-0.054 

a P . No/.ieres and D. Pines, Phys . Rev. 111. 242 (1958). 
b J . Hubbard , Proc. Roy. Soc. (London) A243, 336 (1958). 
» W . J . Carr and A. A. Maradudin , Phys . Rev . 133, A374 (1964). 

final value of the correlation energy per particle ec=€inter+€i+€Sr+€2, as computed by us, together with the re­
sults as obtained by Nozieres and Pines,7 Hubbard,8 and Carr and Maradudin.3 

V. SUMMARY 

We see from the Table I I I that our value of the correlation energy, at metallic densities, is up to 20% lower than 
that of the previous investigators. Thus, almost all of the gain in energy at the intermediate stage over the Bohm-
Pines-Noziere's intermediate value of the energy is preserved through the final transformation. The gain arises 
from the use of the variational principle at the intermediate stage to find the "best" intermediate transformation. 
I t is shown in the appendix that our intermediate transformation function 

U= E Vk
1/2Ck7)kpk 

k<kc 

with Ck given by Eqs. (9) is an extremum. 
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We have obtained an upper (lower) limit to the ground-state (correlation) energy within the accuracy of the 
perturbation-theory calculation together with the random-phase approximation. The over-all accuracy of the re­
sults obtained by the above procedure has been discussed in great detail by Pines and Nozieres7 and is estimated 
to be 15%. 

The validity of our result for the ground-state energy of an electron gas rests on the assumption that the ground-
state energy of the extended system is greater than or equal to the ground-state energy of the actual physical 
system. As has been pointed out before, this assumption holds within the random-phase approximation which 
leads to the exact answer for the ground-state energy in the high-density limit. Furthermore Bohm, Huang, and 
Pines12 have given physical arguments in support of the aforementioned assumption, which make it plausible. 

APPENDIX 

We wish to show in this Appendix that the intermediate transformation eiU/h, with U—Y,k<kcVk1/2CkVkpk with 
Ck given by Eqs. (8) and (9), is an extremum, i.e., if we make a small departure 8k(rj) from the linear form of the 
function U of -q^ i.e., 

U'- Hnl/2Lck7jk+dk(v)1pk, 
k<kc 

then the corrections to the ground-state energy are of the second order in 6k. 
The new intermediate Hamiltonian H'inter, 

can be obtained as before\ising the commutation relations (4). We get 

Pi2 

#inte/ = £ — + i E &k*Kk+(ckO>P)2r}k*Vk']+(i/ni) E ^ 1 / 2 f e ^ + ^ ) k - ( p , - ^ k ) e ^ ^ ' 
i 2m k<kc k<kc 

+ 1 Z (ck-lW
/2[rk*pk+Pk*irk-]+(l/2fi) £ (ct-l)vm*Phbrk8k-fik*k] 

k<ke k<ke 

+ (* /2* )Z (c*—l)»*pA*p*Cff**5A*~5jb*ir**]+(i/2ft) E {ck—l)(nvi)mPk*Pi[Trkh--hTri] 
k<kc l,k, <kc 

+(i/2h) E fe~-l)(w,)1/2P^Pz[7r/^*-~^*7rfc*]+^2 E Ck^ind^+dm*) 
l,k <ke k<kc 

+h ZKck-iyvkP^Pk-Nvkl+ifi^m) E E (Wc) 1 / 2 k , |V77 Z *k . l ^^ ) - r » 
k<kc k 9*1 i 

k<ke 

Taking the expectation value of Him^ with |^0) [Eq. (6)], we obtain 

( E o i n t e r ) n e w = = ^ 0 i n t e r + 0 ( 5 A ; ^ 0 . 

Thus, corrections to the ground-state energy because of a small variation 5 from the transformation function U 
are of the second order in <5. The transformation function U is therefore an extremum. 

12 D. Bohm, K. Huang, and D. Pines, Phys. Rev. 107, 71 (1957). 


