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Correlation Energy of an Electron Gas at Metallic Densities
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A combined variational and perturbation-theoretic procedure is employed to obtain an upper limit to the
ground-state energy of an electron gas at intermediate metallic densities within the accuracy of the per-
turbation-theory calculation of the ground-state energy. The Bohm-Pines auxiliary-variable theory of
electron interactions is used. The Bohm-Pines intermediate transformation is modified so that it minimizes
the ground-state energy at the intermediate stage. Further corrections are computed by perturbation theory
following a procedure similar to that of Nozitres and Pines. The final results for the correlation energy at in-
termediate densities are up to 209, lower than those of the earlier investigators. In the Appendix, it is shown
that the intermediate transformation used in this paper is an extremum for its type.

I. INTRODUCTION

HE ground-state energy of a system of a large
number of electrons moving in a background of
uniform distribution of positive charge, so that the en-
tire system is neutral, has been calculated quite ac-
curately both in the high- and the low-density limits.
The results of these calculations are usually expressed
in terms of the extent to which they represent improve-
ments over the Hartree-Fock calculation of the ground-
state energy. If 7, is the mean interelectronic spacing
measured in Bohr units, then one can write,
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where ¢ is the ground-state energy per electron, the
first two terms on the right are that quantity calcu-
lated in the Hartree-Fock approximation and e is the
correlation energy.

Gell-Mann and Brueckner! have shown that in the
high-density limit, the correlation energy may be written
as the following series:

ee=A Inr;+C+Dr, Inz-+ Ero+0(r 2 Inr,) .

They explicitly calculated the constants 4 and C.
Dubois? and Carr and Maradudin® have recently cal-
culated the constants D and E.

In the low-density limit #,2> 10 it was first shown by
Wigner? that the correlation energy may be written as a
power series in 7,71/2

€= arsV2+4-br 324 o2

The densities actually found in metals lie in the inter-
mediate density region 1.8<7,<5.6. There is no known
rigorous expression for the correlation energy at these
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densities. Utilizing the collective description of the elec-
tron gas developed by Bohm and Pines,® Pines,®
Noziéres and Pines” have suggested an interpolation
procedure by which the correlation energy may be
obtained approximately. Hubbard® has obtained ap-
proximate results for the correlation energy at the
intermediate densities by a different interpolation
procedure which agrees within the accuracy of the
calculations with those of Noziéres and Pines.” More
recently, Carr and Maradudin® have estimated the cor-
relation energy at the intermediate densities by inter-
polating between the rigorous results for the correlation
energy in the high-density and the low-density limits.
Their results are again in agreement with those of Refs.
7 and 8 within the accuracy of the calculations.

However, all the above quoted results for the cor-
relation energy are approximate. Since there is so far no
rigorous expression for the correlation energy at metallic
densities, it is of some interest to see if one can compute
the correlation energy to a better degree of approxima-
tion than that of the previous investigators.

In this paper we propose to employ a combined varia-
tional and perturbation theoretic approach to obtain an
upper limit on the ground-state energy of an electron
gas at the intermediate densities within the accuracy of
the perturbation-theory calculation of the ground-state
energy. We shall use the auxiliary variable theory of
electron interactions of Bohm and Pines.?:

II. INTERMEDIATE TRANSFORMATION

The Hamiltonian for a system of IV electrons in a
cubical box of volume L3 with uniform background of an
equal amount of positive charge, subject to periodic
boundary conditions may be written as
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where
pi=(%/1)V, pr=2qe"i (1)

v =4me?/L3k2.

and

If we add to H,

Hoaa=3% 2 (wp*me— 20w *pr) (2
k<kc

we obtain the extended Hamiltonian of Bohm and
Pines, H exty

Hext=H+Hadd- (3)

The operators = are such that they commute with
all the particle operators and there exist conjugate co-
ordinate operators 7; (which also commute with the
particle operators) satisfying the commutation relations,

I:Tk;nk’:l = —h 0w )
[rrymr J= [y ]=0,
T =m_,

and
771c*= Nk

The extended Hamiltonian H e then has 3N+ N’ de-
grees of freedom, where

L\? kAL3
N’=<—~) / Bh=
27!' k<ke 671’2
It has been shown® that within the random-phase

approximation, the net effect of the added terms H,aa
is to change the ground-state energy by

¥y
1

: k<ke e(k,O) ’

where e(k,0) is the static dielectric constant of the sys-
tem. Since' €(%,0)>0, the ground-state energy of the
system is greater than or equal to that of the original
system. Thus, if we use some trial vector |¢), it is
guaranteed in the random-phase approximation that
Eginter={¢| Hoxs| ¢)/{¢|b)> Eo, where E, is the exact
ground-state energy of the original system. Since the
random-phase approximation leads to the exact answer
for the ground-state energy in the high-density limit,
the above equation holds in that limit. We assume that
it holds at intermediate densities also. We can then use
trial vectors containing some parameters to compute
Eyinter and then minimize Eo'"ter with respect to these
parameters to obtain an upper limit on the ground-state
energy of the original system.

Instead of making the trial vectors a function of param-
eters, we use a trial unitary transformation e(/#U (k)
containing parameters ¢ to transform the Hamiltonian;

9 D. Pines, in Elementary Excitations in Solids (W. A. Benjamin,
Inc., New York, 1963), p. 166.
1 Reference 9, p. 292,
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the variational parameters ¢; in the transformation
operator U(ci) then appear in the transformed Hamil-
tonian. We then compute E,™*r using a suitably tracta-
ble trial vector |yo) and minimize Eq™*r with respect to
the parameters c; to obtain the “best” unitary trans-
formation. Evidently this procedure is equivalent to
using

e~ i/ R)U (ck) l‘//0>

as the trial vector.
Our transformation operator U(c) is

Uler)= Y. v 2%cinipk. (4)

k<kc

(If we put ¢,=1 for all &, we get the Bohm-Pines inter-
mediate transformation operator.) The transformed
Hamiltonian (to be referred to as the intermediate
Hamiltonian, denoted by Hinter) is given by

Hijger= eiU/hHexte_iU/h )

(5)
Hinter= T+H050+Hsr"|—Hrlr+HI+HII,
where
T=3%(p2/2m), (sa)
Hoo=3% 2 (mi*mitwy?|ce| 2ni¥ne) (5b)
k<ke
Ho=3% 3 (ox*pr—N)vs, (5¢)
k<ke
Hrh'=% Z [(Ck*— 1)<Ck— l)vkpk*Pk—va:] ) (Sd)
k<ke
i
Hi=— Y v %k (p;i—3nk)eikr:
m k<kc
+3 2 wul?[(ex—Dprme*+c.c.], (Se)
k<ke
Hu=(1/2m) 3= > (vvn)2cror*ni*nik-le?®=Dr i (5f)
Bl d
ki <ke

wpt=4wNe/Lém.

If we set c,=1, for all &, we obtain the Bohm-Pines in-
termediate Hamiltonian, Hinse 2T, as, indeed, we should.
We note that Hiyer, although similar to Hinge.BY, has the
following new features: (1) The frequency of the
oscillators is already k-dependent. (2) The interaction
term linear in the field variables, Hy is more compli-
cated by the presence of the second term in Hi. (3)
There is a new term H i, which we call the residual long-
range interaction, and which represents the particle in-
teraction for £<k.. In the Bohm-Pines work features
(1) and (3) appear only after their final transformation.

Now choosing |,) to be the ground-state eigenvector
of T+ H s,

]‘I/0> = {3’/11) l \bosc) ) (6)

where |¢,) is a Slater determinant of single-electron
momentum eigenvectors with minimum kinetic energy
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and |Yose) = Hicn, | Yosc*), |Wose®) being the lowest energy
eigenvector of the kth oscillator, we compute Eq'*ter, We
obtain

Egrter=3F,45 3 |ox|hopt3i 3 [(oror*pr)— Noi]
k<ke

k<ks

+3 k% Llex* =D (er— D rpr*pi)— Nui]l,  (7)
where |
(Vepr*or) = Wp| vipr™pr | ¥p) )

= (2¢2/37)(3ke?/2k—k/8),

and %, is the Fermi wave vector, given by k¢®= 372N L3,

We now choose ¢ so that Eyi*ter is 3 minimum. It can
easily be seen that the values of ¢; that minimize
Eointer are

$ha,
cp=1———— for

s 0LkLk,
<vkpk*Pk>

©

=0 for all other %,

where ko= —a-+[a?412ke? ]2,
a=23mhw,/e. (10)

Substituting (8) and (9) into (7), converting the sums
into integrals, we can write the correlation energy per
particle, at the intermediate stage, after some elemen-
tary integrations, as

€7 = (1/N) (Byer— )

2

Th?'wp 12“602
~ o+ O/ B oI |

(4 ko
— (3€%ko/4m)[ 3B — (1/48)8.*],

where we have set 8.=k./ko.

(11)

For purposes of comparison, we give here the ex-
pression for the correlation energy as computed after
the Bohm-Pines intermediate transformation. It is
easily obtained by setting ¢x=1 in Eq. (7) and carrying
out the integrations.

3e?

%
48— (1/48)8.,1].
4

—1
eI BP) =17 B, 3—

Bohm and Pines chose!! their cutofi momentum 8., by
minimizing e.f®") with respect to 8.p. One gets

Bep=2a+ (4a2+412)1/2,

In Table I below we give the values of 8., Bey, €7,
e.I®BP)at typical metallic densities, together with the

1Tn their subsequent papers, Pines and Noziéres chose the
cutoff momentum from different considerations (see Ref. 7). But
since Bep is the cutoff momentum which minimizes e/®F), any
other choice of cutoff momentum increases the intermediate
energy e8P
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TaBLE 1. Correlation energy per particle at intermediate stage;
the energy is given in Ry.

¥s Bcp Be écI(BP) Ecl Gain GGNP

2 049 093 —0.018 —0.035 0.017 —0.093
3 05 109 -—0.018 —0034 0016 —0.081
4 068 123 —0.018 —0.033 0.015 —0.072
5 075 134 -—0017 —0.032 0.015 —0.067

final value of the correlation energy, e.N* as estimated
by Noziéres and Pines.”

Thus we see that our simple modification of the Bohm-
Pines intermediate transformation results in a gain in
energy which is up to 209, of the final value as given by
as given by Noziéres and Pines.’

We shall demonstrate in the Appendix that if we
make a small departure 8(n;) from the linear form of
U(nr), and then if we compute the ground-state energy
at the intermediate stage, the terms linear in 6(»z) do
not give any contribution, thus showing that our trans-
formation function is an extremum.

III. FINAL TRANSFORMATION

Introducing the creation and destruction operators,
a;* and a,

=%/ 204c1)*(ar+a*_1) ,

T ="1(hwycr/2)*(ar*—a_s),
together with their commutation relations which follow
from Eqs. (4),

Lax*,ar]=—dur,

(12)
Lav*,ax*]=[ar,ar ]=0,
we can rewrite our Hamiltonian as
Hinger=Hot+Hi+Hu+Ho+H e, (13)
where
Hy=T+ IIosc
pé
T=3 —, Hoe=% 2. hoycr(ar*artarar™), (13a)
i 2m k<ke
Hi=1 Z dk[dlk‘ (p,~-—§—hk)—dg:]eik‘”—|—c.c. , (13b)
k<ke
dv=3hi (e /mesy)
(13¢c)

d2= %h’l}}c)lm(ﬂk— 1)6k1/2wp1/2 s

and Hir, Hy, and H i, are given by the Egs. (5f), (Sc),
and (5d), respectively.

We adopt the random-phase approximation and ne-
glect Hip and then perform a perturbation-theoretic
unitary transformation on our intermediate Hamil-
tonian Hinger which eliminates Hy [Eq. (13b)] to first
order in perturbation theory. The required unitary
transformation can be shown to be V=e¢i/* where the
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Hermitian operator S is given by Thus, the first-order commutator of H, cancels ex-
[dik- (pi—37k) — dyJeteers actly the z?roth-order commutator of Hy. Because of the

S=3X Le.c. way the higher order commutators are generated from

 <ke wpCh—Kpi/m+nk2/2m the first-order commutator, there exists a relationship

] . . . between the commutators of Hy and H, which can be
The old Hamiltonian Hineer goes into the new Hamil-  gtated as

tonian Hpew

[[inter — e+isthintere-—islhE Hnew (]ID+ lll)new: T+ [Ios,-c
Hooet 5 (2 Lo fitns L1 /Iy
- intnr+ ,,Z=:1<;) ;[ interys ]n + Z EIII,S]n<'"'—(—:~—1_)"'><%> .
n=1 ! - !
where [ HinteryS Ju is the nth-order commutator. e
A direct calculation shows that ..
; Retaining only the n=1 term, we have
;EHO)SJ: -1 kz—.‘; akEdlk'(pim I/th)-—dgj-f-(‘(: I[now: T+I‘Iosc+Hrp+Hrlr+Ha+Hsra (14)
1 <ke
=—f;. where
lzoﬁcl= osc+Hoscc ) (14‘0
2we*hy  [2(k-pi)/mJwpcs— (ke pi/m)2+42k4/4m?
Hose®=3% Z( )Gk s (ar*ar+arar™), (14b)
My (cxwp—Kk+pi)2/m—h2k*/4m?
b 5 g O YR — T () e
W, (wpcr—k-p;/m—hk2/2m)
%[d 1k (pj— 37k) —ds Je™ [ d k- (pi—37k)d2 ] 149
(wpcr— (k- pj/m)+nk?/2m)
72 0pk2\ cx[ 2wk (K pi/m)+ (ke pi/m)2— h2k4/4m? |+ (cp— 1) 2w,c
Hy=—— Y (_k_.\ il : ™ (ot aita®), (14d)
wp/ (wpit ke pa/m)2—hks/dm?

2m k >ke
1

and T, Hose, Her, Hyp1e are given by Egs. (13a), (5c), and (5d), respectively. We have neglected the effect of the final
transformation on Hy and Hy,.

IV. CORRELATION ENERGY

We now compute the correlation energy using the Hamiltonian as given by the Egs. (14). As one should expect,
H,' is diagonal with respect to eigenfunctions (6). The computation of the first-order correction to the energy
with Hose®+Hyp+H,a as a perturbation is entirely equivalent to computation of the second-order perturbation
correction with Hy as a perturbation, together with the random-phase approximation.

The correction arising from Hos® is (¢ | Hose®|¥),

<¢’H0800l‘l’>= Z <¢[Hosuc<k) I‘p) ’
k<ke
with
2whe? 2(k+pi/m)wpcr,— (ke pi/m)2+#12kt/dm2+ (1— c32)w,? )

Hoscc k = (4
Wl ®)|¥) ey kzi: (wpcr— K- pi/m)2—h2k4/4m?

Changing the sums to integrals, and carrying out the integrations, we obtain

emwpky  emiw, hk2\?  fhkok\? wycr—Tikok/m—Nk2/2m
9| Han ()| 9) = i | l( )-(55) 1 ]

CpT Ck Crwp——" n
2whk? 4 h®ks wpCr+fikok/m—tk?/2m

2m
nki\N?  [hkok\2 wpCr+kok/m-+hk2/2m
sy (o :
2m m wpCr— hkok/m—~+Tk2/2m

m
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Similarly, we obtain the correction arising from H,y,

W Hupl¥)=Z W Hu* ¥,
k<ke

where (¢ | H:p,*|¢), after elementary integrations, is given by

e*pp? ek 1 e
2.1 [— _I__, ___Ck2

emwy’ Py
l/]cz_ CE™ Ck
2wh2k? 2rh2k whk 127 24

H,(k = !
| Hu >1w>~—5%{—

em? wy |:( hk2)2 (kpp>2:|l Lwpcu—1k2/2m—kpr/m [ wpc—Tk2/2m~+kpr/m ]
—— n

————cy| | WpCr——
Axhd b 2m m w2k

IENE  fhpp\? w0202

+[(wpck+———> —-(—) :Iln .

Th 2m m (wper 7k 2m~+-kpr/m)(wycr+ k2 2m—kpr/m)
en

emwppr  €*prpicr  e*ker  Epricr ke emiwpici?  e?mPwpcy
- | 1

Cr—
2w 2whk 12r ok 24 2aWES  AnhdES

kN2 [kpr\? WpCr kN2 fkpr\*T]  wpckt Pk 2m-t+kpr/m
e ) [l
. 2m m wpCh— Nk 2m~+kpr/m 2m m WpCk

The correction per particle due to H,s¢ and H,, can then be written as

<¢ I Hl‘p<k)+Hoscc(k> I 'p> = %hwpck—

1
€= E\;(‘p] Huscc+Hrp l ‘/’>
. (15)

1
= kzdk<¢lHoscec(k)+HU’(k) I'p)

277'27l 0

This integration can be carried out numerically.
We next compute the second-order perturbation theory correction e arising from Hy [Eq. (5¢)]. It can be
seen to be

€sr = esra‘l" €r? y (16)
where e,%, the correction for electrons with antiparallel spin and e.? for electrons with parallel spin, are given by
1
e=— | d%BJ.(B), (16a)
8x3 B>Be
1
o’ =—— d*3T »(8) (16b)
. 74 J g>p
with
7.08) 3 1 » - 1
PR P
2m? B¢ BB (p1+p2)
[p1] <1 |p2] <1
Im+8| >1 |p2+8| >1
and

3 1 1
Jp(B)=—— / d? / a3 {
2ur b pe Bt B(B+pitps)?

Il <1 | 92| <1
Ip1+8] >1 |p2+8| >1

(p1, p2 are electron momenta measured in the units of Fermi momentum.)

Nozitres and Pines” have argued that the contribution e.” from the electrons with parallel spin is small. We have
not shown that it will be small for our choice of cutoff momentum but we believe it is negligible; in any case the cor-
rection will be negative and will lead to further lowering of the ground-state energy. From here on we neglect this
contribution.
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For 8>2, with | 1], |p2| <1, the restrictions |p;+B|>1 and |ps+8| > 1, are automatically satisfied. Further-
more, for 8>2, 8- (pi+p2)/82<1 and therefore we can write, for 8> 2,

3 o n
]aout(ﬂ)z — Z Z(._1)nB—n—SnCr/dSPI/d3p2[(@.pl)n—w(g.p2)r]

1r2 n=0 r=0

(C, are the coefficients in the binomial expansion)

w 2m 2 !
=48 3 3 gm2 (2m) for B>2. a7
m=0 =0 (254-3)(2s+1)1(2m—25+3) (2m—2s+1)!

For 8<2, on carrying out the integrations we obtain,

‘ 3 1 29 - 321 1 161
Jan(8)= ~—[-—63+—ﬂ+ (wﬁw— -) 1n2+( 1+~62———ﬂ4+—~ ~)
234 20 15 58 80 158

1 1 161
Xln(2—5)+(1~~,32+—54+— —)’ ln(2+ﬁ)] for <2. (18)
6 80 158
Substituting (17) and (18) in (16) we obtain

1 1
w=— [ gdssoE)+— ] 8. (8)
27 J g>2 27 J pr<p<n

12 w 2n—=2) n 1 1

w2 n=1(2n4-1) 1=1 2241 (2]—1)1(214-1)(2n—214-1)(2n— 21+ 3)

€gr =

3r/—4 8 16 1
—-——l:(————- an) ln2—-——+——-ﬁc ——(1—ln2) Ing;———1n2
472\ 15 3 1582

1 1 1 81 2
6c3+",80+'-+—“ _+—) ln(2+65)]Ry'
40 6 3

1 1 1 81 2
+(——502——3c—-+~ —+—) ln(2~l3c)+(—
8. 158.

240 6 B. 1582 3

The first term in the above expression can be evaluated numerically.

Finally we evaluate the correction which arises from H,, and H, in second and higher order perturbation theory,
€2, by the Gell-Mann—-Breuckner selective summation method. In principle this can be done exactly but the com-
putations become unmanageable. We are, therefore, forced to resort to an approximation.

Our approximation consists in making a series expansion in powers of % of the coefficients ¢,

Orfiw,  (k/ko)
ko 12— (k/ko)®

whwpf k (k/ko)?
)
2e%ko \ ko 12

From Table I, we see that the series converges quite rapidly for the values of 8 at metallic densities. Retaining
only the term linear in 3, we have

6k=1_

fiw, k k
] —- ? —_— 1—..7“.,

262/60 ko ko ’

where
y=2¢eko/mhw,.

Using this approximate value of ¢;, one can write H,,, expanding the denominator in powers of % and retaining
the lowest order term in k, as
2me? k-p;)(k-p; 2me?
Z .(_.__liz)_(__lz]_)_eik’(n—rf)_____. Z ek (ri—rj) ,

Ho~—
Mwp? k<ke,ixi k? Y2 k<ke,iri
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and in the same approximation,

2me?
Ilrlrgw_— Z eik' (i) .
Y2 k<ke,ir]
Thus
2we? 1
HotHoaox——— 30 —(kep;)(k-pye® imrd.

MP0r% ki <ke,ixi k?

We can now write e as (see the Appendix of Ref. 7)

Be
/ asg° [ s
47:'(1427’e ne=d

[Oa(u)]"RY, | (19)

-3 (8-p)
Osta)=— f &5 ggp / dt exp[ituf— 1] (6 p+16% 1= — 1446 — 36— 36+ Jur-+ 36w
T

-0

|pl <1
o481 >1
(1+38) 1+38 (1—38) (1—38)
+ (—3u?4-26%4) arctan —%u[arctan arctan :I £8u? ln[l—l- ; ]
u u u u

36 3u* 3ut 3 9 (1-+38)2/u+1
+[——+— e ——+—63-—6u2] —————
et

16 43 43 64 8
{1t is readily verified that the above expression for Qg(x) reduces to that of Nozieres and Pines [Eq. (A7) of
Ref. 77 for small 8.}
Summing the series in (19), we obtain

3 Be 0
== [ "asp* [ dutnC1-+Qate - 0atRy.
dma?r? J .
The above integrations can be carried out numerically. TasLe ITI. Comparison of the correlation energy by various

In Table II, we list the numerical values of the various estimates. The energies are in Ry units.

corrections at metallic densities. In Table III we give the

s

TasLE II. Numerical values of the corrections in Ry. _ €e 2 3 4 5

Present —0.106 —0.094 —0.086 —0.081
75 a e & a —0.093 —0.081 —0.072 —0.065

b —0.099 —0.086 —0.074 —0.067

2 —0.004 —0.035 —0.036 c —0.096 —0.076 —0.064 —0.054
3 —0.004 —0.027 —0.023
4 —0.004 —0.022 —0.02

s P, 7 d D. Pines, . . B 58).
5 —0.004 —0.020 —0.025 b 1 Tiabbard, Broe. Row. Sot, (-ondon) AZ43, 336, (1959

e¢W. J. Carr and A. A, Maradudin, Phys. Rev. 133, A374 '(1964).

final value of the correlation energy per particle e,= €intert+ €1+ ex-- €2, as computed by us, together with the re-
sults as obtained by Nozi¢res and Pines,” Hubbard,® and Carr and Maradudin.?

V. SUMMARY

We see from the Table TII that our value of the correlation energy, at metallic densities, is up to 209, lower than
that of the previous investigators. Thus, almost all of the gain in energy at the intermediate stage over the Bohm-
Pines-Noziére’s intermediate value of the energy is preserved through the final transformation. The gain arises
from the use of the variational principle at the intermediate stage to find the “best” intermediate transformation.

It is shown in the appendix that our intermediate transformation function

U= Z vkl/2ck7)kpk
k<ke

with ¢ given by Egs. (9) is an extremum.



CORRELATION ENERGY OF ELECTRON GAS A 369

We have obtained an upper (lower) limit to the ground-state (correlation) energy within the accuracy of the
perturbation-theory calculation together with the random-phase approximation. The over-all accuracy of the re-
sults obtained by the above procedure has been discussed in great detail by Pines and Noziéres? and is estimated
to be 15%,.

The validity of our result for the ground-state energy of an electron gas rests on the assumption that the ground-
state energy of the extended system is greater than or equal to the ground-state energy of the actual physical
system. As has been pointed out before, this assumption holds within the random-phase approximation which
leads to the exact answer for the ground-state energy in the high-density limit. Furthermore Bohm, Huang, and
Pines!? have given physical arguments in support of the aforementioned assumption, which make it plausible.

APPENDIX

We wish to show in this Appendix that the intermediate transformation eV/% with U=3 i<z, vs*/2cinior with
¢ given by Egs. (8) and (9), is an extremum, i.e., if we make a small departure 6k(1;) from the linear form of the

function U of n, i.e.,
U'= 3wt Loxmet0x(n) Jox,,
k<ke

then the corrections to the ground-state energy are of the second order in 6.
The new intermediate Hamiltonian H'iyter,

r . iU’ 3T’
Hinte' = €U 1M H e~ 30" 1%,

can be obtained as before using the commutation relations (4). We get

Hipser —Z—‘f‘z 2 [mi*met (o) mi*mi 14 (3/m) Z o2 (et 0 k- (pi—37k) et

k<ke
+%k§ (cr— Dt [mi*prtpi*mi ]+ (1/ Zh)kz:_;; (cx—D)vpr™*prlmrde— Semi ]
+ (7,/2%)]0% (cx— Vorpr*pr[ ma*01* — dp*mi* ]+ (/27) Z<k (ex—1) (vrvs) 21 * oo 101 — Sy ]
M
+(@/ Zh)l ;Ek (cr—1) (v) 2oi*pa i *60* — 8% mi* ]+ 371 ;E: crwp* (04 8xm™)
15k
+3 kg.c L(cx—1)vepr*pr— Ny ]+ (42/2m) Z Z(vkvc)m | x| 2nani ¥k - lgite=Drrs

Fi %k,
+3 3 [owor*pr— Nop J+O0(8k0x) «

k<ke
Taking the expectation value of Hinter’ With |¢o) [Eq. (6)], we obtain
(Eomter)new mter_i_o(akak,)

Thus, corrections to the ground-state energy because of a small variation & from the transformation function U
are of the second order in 6. The transformation function U is therefore an extremum.

2D, Bohm, K. Huang, and D. Pines, Phys. Rev. 107, 71 (1957).



